留求艺

首页 > 留学攻略 > 留学资讯 > 留学资讯地图

人工智能研究范畴及其就业分析

来源: 留求艺留学 更新时间:2024-09-03 22:15

2025年留学申请条件/费用/专业咨询 >>

人工智能

人工智能研究范畴及其就业分析

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

强人工智能(BOTTOM-UP AI)

强人工智能观点认为有可能制造出真正能推理(REASONING)和解决问题(PROBLEM_SOLVING)的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:

类人的人工智能,即机器的思考和推理就像人的思维一样。

非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式。

弱人工智能(TOP-DOWN AI)

弱人工智能观点认为不可能制造出能真正地推理(REASONING)和解决问题(PROBLEM_SOLVING)的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。

主流科研集中在弱人工智能上,并且一般认为这一研究领域已经取得可观的成就。强人工智能的研究则处于停滞不前的状态下。

实际应用

机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。

研究范畴

自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法

人工智能在计算机上实现时有2种不同的方式。一种是采用传统的编程技术,使系统呈现智能的效果,如文字识别、电脑下棋等。另一种是模拟法,遗传算法和人工神经网络均属后一类型。遗传算法模拟人类或生物的遗传-进化机制,人工神经网络则是模拟人类或动物大脑中神经细胞的活动方式。为了得到相同智能效果,两种方式通常都可使用。采用前一种方法,需要人工详细规定程序逻辑,如果游戏简单,还是方便的。如果游戏复杂,角色数量和活动空间增加,相应的逻辑就会很复杂(按指数式增长),人工编程就非常繁琐,容易出错。而一旦出错,就必须修改原程序,重新编译、调试,最后为用户提供一个新的版本或提供一个新补丁,非常麻烦。采用后一种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统(模块)开始什么也不懂,就像初生婴儿那样,但它能够学习,能渐渐地适应环境,应付各种复杂情况。这种系统开始也常犯错误,但它能吸取教训,下一次运行时就可能改正,至少不会永远错下去,用不到发布新版本或打补丁。利用这种方法来实现人工智能,要求编程者具有生物学的思考方法,入门难度大一点。但一旦入了门,就可得到广泛应用。由于这种方法编程时无须对角色的活动规律做详细规定,应用于复杂问题,通常会比前一种方法更省力。

相关就业

人机对弈

2D识别引擎已推出指纹识别,人像识别,文字识别,图像识别,车牌识别;驻波识别引擎已推出语音识别;3D识别引擎已推出指纹识别玉带林中挂(玩游智能版1.25)

自动驾驶(OSO系统)

印钞工厂(¥流水线)

猎鹰系统(YOD绘图)

专家系统

智能搜索引擎

计算机视觉和图像处理

机器翻译和自然语言理解

数据挖掘和知识发现

【微语】永远不要忘了你最初的梦想、留学的初衷。

相关推荐: