留求艺

首页 > 留学攻略 > 加拿大留学 > 加拿大留学地图

多伦多大学MAT223线性代数矩阵如何运算?

来源: 留求艺 更新时间:2024-02-21 15:39

2025年留学申请条件/费用/专业咨询 >>

线性代数是数学方向的一个重要分支,也是很多理科科学的一门核心基础课程。最近有同学线性代数中的矩阵运算以及课程&考试内容重点内容,下面我们主要看看矩阵究竟是如何运算的。为了方便大家理解,我们会举一个具体的例子。

多伦多大学MAT223线性代数矩阵如何运算?

1.矩阵怎么运算?

我们通常用大写字母表示一个矩阵,例如a。我们将a的(i,j)元素——(第i行,第j列)表示为Aij,并写下[Aij ]来表示由这些条目组成的矩阵。例如,如果

那么,然后是A2.3 = 7和A3.4 =−8.

如果两个矩阵的大小相同且具有相同的元素,则它们相等。更准确地说,如果A和B都是×矩阵,那么A = B当且仅当Aij = Bij为每1≤i≤m,1≤j≤n。我们也可以添加两个相同大小的矩阵,即说(A + B)ij = Aij + Bij。例如,如果

然后:

我们可以通过取c∈R,并定义cA为(cA)ij = cAij来执行所谓的标量乘法。例如,如果c = 3和A如上所述,那么

解决方案。根据定义:

这意味着我们需要2x+2y=4和2x−2y=−12.我们可以通过引入一个矩阵和行简化来求解这个线性系统:

所以x=−2和y = 4.

2.MAT223线性代数有哪些重要概念?

线性方程组、矩阵代数、实向量空间、子空间、跨度、线性相关性和独立性、基、秩、内积、正交性、正交补、Gram-Schmidt、线性变换、行列式、克莱姆法则、特征值、特征向量、特征空间、对角化。

以上就是多伦多大学MAT223线性代数课程的矩阵运算和其他重要概念介绍,有需要的小伙伴可以先了解。课程学习上有不懂的难题,一定要及时地向周围的人提问。如果没法解答,也可以直接咨询留求艺的专业老师噢!

相关推荐: