AMC是American Mathematics Competition美国数学竞赛的缩写,由美国数学协会(Mathematics Association of America)于1950年成立。试题由简至难兼具,使任何程度的学生都能感受到挑战,还可以筛选出特有天赋者。这项竞赛就是为所有喜爱数学的学生所开发的。
一、AMC8介绍
AMC8是针对初中一年级、初中二年级学生的数学测验,25题选择题、考试时间40分钟。其测验目的是为了增进学生对数学习题解答的能力。这项测验提供了一些中学程度的数学概念的教学与评量;其题目范围不仅是由易而难,而且还涵盖了较广泛的数学实际应用,以下是知识点规划:
基础代数部分:
1. 速度时间路程图像问题-(一次函数的应用)
2. 比例、分数、百分数的应用题
3. 数字的巧算及新定义运算
4. 数列,多元方程高次方程等
基础几何:
1. 三角形、四边形的性质
2. 圆的相关性质
3. 不规则图形的周长、面积等
4. 立体几何图形的相关应用
基础数论:
1.奇偶分析,整除的性质,GCF & LCM
基础组合:
1. Venn diagram and sets
2. 排列组合概率
3. 阶乘,二项式系数,杨辉三角等
二、AMC10介绍
AMC10是针对高中一年级及初中三年级学生的数学测验,25题选择题、考试时间75分钟;包含演算概念理解的数学题型。AMC10允许使用计算器(工程用计算器除外)。AMC10的主要目的是在刺激学生对数学的兴趣并且透过以选择题方式来开发学生对数学的才能;题型范围由容易到困难。参予AMC10的学生应该不难发现测验的问题都很具挑战性,但测验的题型都不会超过学生的学习范围。这项测验希望每个考生能从竞赛中享受数学。以下是知识点规划:
整数运算:
1. 最大公约数,最小公倍数,连续整数、奇数、偶数求和,
2. 因式分解及相关应用
3. 指数运算的基本法则及解方程
排列组合及概率:
1. 乘法法则、加法法则
2. 排列的基本原理
3. 组合的基本原理
4. 概率的计算方法
线性函数:
1. 图像、性质及解析式,不等式的求解及应用
2. 线性不等式的求解及应用
3. 列线性方程组解应用题
数列:
1. 等差数列、等比数列求项数及通项公式
2. 非等差数列、等比数列
平面几何:
1. 相似及全等三角形的判断与应用
2. 圆的内切、外切、公切线、弦的性质
立体几何:
1. 柱体、锥体的表面积、体积的计算
2. 柱体、锥体、球的内切的应用
3. 三角函数在空间内的应用
解析几何:
1. 空间内距离公式、中点公式、点到直线的距离
2. 空间中平行、垂直和对称
3. 利用空间坐标解决的立体几何问题
三、AMC12介绍
AMC12是针对中等学校学生的数学测验,25题选择题、考试时间75分钟;包含演算概念理解的数学题型。AMC12的测验允许使用计算器,工程用计算器除外。
AMC12的主要目的是在刺激学生对数学的兴趣并且透过选择题的方式来开启学生对数学的才能。如果学生能预先练习必定能提高对数学的兴趣,最重要的是学生能集体参与对数学的练习远比一个人独自研读的效果来得好,特别在老师的指导之下,能够学习到如何分配时间解题。参予AMC12的学生应该不难发现测验的问题都很具挑战性。
因为AMC12测验范围涵盖了许多知识和能力,使得成绩的层级也有所不同。以资优证书(Honor Roll)来说,成绩在150~100分或者更准确的计算是全球考生成绩前3%才有可能获得资优证书。相对学生及学校而言,成绩是很重要的;并且在地区性及本地最高分的学生及学校都会被编印出来。MAA总部每年都会将这些成绩的评比编列成册并且发送给有参加这场测验的学校。学生可以藉此来比较自己的成绩和以往的差异。AMC12的另一个特殊的目的是在帮助一些学生来发掘出他们对学数的才能,让学校注意到这些学生的才能及存在。